Wednesday, 22 November 2017

Can Ultrasound Elastography Substitute Tissue Biopsy in the Diagnosis of Malignancy?




We casually judge a material as “hard” or “soft” by applying pressure while touching it. In medicine, clinicians palpate the patient’s body to determine if certain tissue feels normal, unusually hard or unusually soft, to get possible signs of disease or disorder. However, palpation is highly subjective and therefore can be unreliable. For example, lesions that are very small and those that are located deep into the body may not be detectable by palpation alone. Also, the degree of hardness between different pathologies may not be distinct enough that can be appreciated by our sense of touch despite extensive training and experience. Although in some cases, abnormal growths can be easily judged as hard tumor or cystic tumor based on their hardness and on their echo pattern during conventional ultrasound imaging, to differentiate one type of solid tumor to the others based on degree of hardness can be difficult. Such distinction is particularly important in clinically differentiating deadly malignant tumors from the benign ones because early detection and intervention of malignant lesions can be life-saving. A newly introduced ultrasound technology provides a noninvasive way to accurately diagnose a malignant tumor based on its characteristic hardness. This technology is being utilized in a diagnostic procedure that grades tissue elasticity using ultrasound, more often called “ultrasound elastography”.

Use of ultrasound in diagnosis has been one of the oldest of the “modern technologies” available to medicine today. Imaging 1 Received Date: 10 Feb 2016 Accepted Date: 16 Mar 2016 Published Date: 21 Mar 2016 Copyright © 2016 Feril LB Citation: Feril LB. (2016). Can Ultrasound Elastography Substitute Tissue Biopsy in the Diagnosis of Malignancy? M J Canc. 1(1): 004. Ultrasonography, or imaging by ultrasound, is one of the most commonly utilized diagnostic procedures today. This is despite the introduction of many other alternative diagnostic methods. The reasons include ultrasound being non-ionizing (unlike X-rays and CT scans), non-invasive (unlike tissue biopsies), less expensive and more commonly available (unlike MRI and genetic tests). In addition, new ultrasound technologies have also made ultrasonography more reliable and agile, thus offering additional diagnostic capabilities. 

One of these new technologies is the so-called “ultrasound elastography”. ABSTRACT with the use of ultrasound, also called ultrasonography or echography, is considered one of the safest and cost-effective real-time imaging that is widely used today not only for diagnosis but also as an instrument useful in interventional medicine. The imaging works when ultrasound waves, usually at frequencies between 2 and 10 MHz, is applied on the part of the body and the reflected sound waves (or echo), collected by the receiver and then analyzed by the computer, give a picture of tissue along its path. The varying tissue densities will results in varying impedances that will in turn give a varying echo signals and hence the formation of an image. Some tissue will have characteristic echo patterns that will help guide sonographers to identify landmark structures and detect possible anatomical anomalies and other abnormalities.

No comments:

Post a Comment